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The primary goal of our study was to

explore the utility of event-related

brain potentials (ERP) as real-time

measures of workload. To this end,

subjects performed two different tasks

both separately and together. One task

required that subjects monitor a bank of

constantly changing gauges and detect

critical deviations. Difficulty was

varied by changing the predictability of

the gauges. The second task was mental

arithmetic. Difficulty was varied by

requiring subjects to perform operations
on either two or three columns of

numbers. Two conditions that could

easily be distinguished on the basis of

performance measures were selected for

the real-time evaluation of ERPs. A

bootstrapping approach was adopted in

which one thousand samples of n trials

(n = i, 3, 5 ...65) were classified

using several measures of P300 and Slow

Wave amplitude. Classification

accuracies of 85% were achieved with 25

trials. Results are discussed in terms

of potential enhancements for real-time

recording.

INTRODUCTION

The research presented here derives
from an extensive series of

investigations that have demonstrated

the utility of Event-Related Brain

Potentials (ERPs) in the assessment of

residual capacity during the acquisition

and performance of a variety of

perceptual-motor and cognitive tasks

(Donchin et al., 1986; Kramer, 1987).

The focus of the present study was to

assess the feasibility of employing ERPs

as on-line measures of mental workload.

If physiological data, and ERPs in

particular, are to serve as real-time

measures of operator mental load, the

amount of data (e.g. secs, mins?)

necessary to reliably discriminate among

levels of workload must be determined.

This question will be addressed in the

present study by adopting a

bootstrapping approach in which we

examine the classification accuracy of
ERP measures with from 1 to 65 secs of

data. However, before we describe our

experiment in detail we will briefly

discuss the previous research that

suggests that ERPs provide a sensitive

and reliable measure of mental load in

an off-line context.

Several recent studies have

illustrated the usefulness of the ERP,

and more specifically the P300

component, as an index of processing

resources (Horst et al., 1984; Isreal et

al., 1980; Kramer et al., 1985, 1987;

Natani and Gomer, 1981; Sirevaag et al.,

1988). The general paradigm employed in
these studies requires sub3ects to

perform two tasks concurrently. One

task is designated as primary and the

other task as secondary. Subjects are

instructed to maximize their performance

on the primary task and devote any

additional resources to the performance

of the secondary task.

ERPs are elicited by events in

either one or both of the tasks.

Increases in the perceptual/cognltive

difficulty of the primary task result in

a decrease in the amplitude of the P300s

elicited by the secondary task.

Conversely, P300s elicited by discrete

events embedded within the primary task

increase in amplitude with increases in

primary task dlfficulty. Furthermore,

changes in response related demands of a

task have no influence on the P300

(Isreal et al., 1980).

The reciprocal relationship between

P300s elicited by primary and secondary

task stimuli is consistent with the

resource tradeoffs presumed to underlie

dual-task performance decrements

(Eahneman, 1973; Navon and Gopher, 1979;

Sanders, 1979; Wickens, 1980). That is,

resource models predict that as the

difficulty of one task is increased,
additional resources are re-allocated to

that task in order to maintain

performance, thereby depleting the

supply of resources that could have been

used in the processing of other tasks.

Thus, the P300 appears to provide a

measure of resource tradeoffs that can

only be inferred from more traditional

performance measures. Furthermore,

P300s elicited by secondary task events

are selectively sensitive to the

perceptual/cognitive demands imposed

upon the operator. This selective

sensitivity may be especially useful in

decomposing the changing processing

requirements of complex tasks (Kramer,

1987).

One might ask why ERPs should be

used to monitor changes in resource

demands given that several technically

simpler approaches to the assessment of
skill acquisition and mental workload

have already been implemented. Although

339

PRECEDING PAGE BLANK NOT FILMED



numerous performance-based measures of

mental workload exist, they suffer from

several drawbacks. First, some of the

measurement techniques require subjects

to perform a secondary task which

frequently interferes with the

performance of the task of interest

(Knowles, 1963; Rolfe, 1971; Wickens,

1979). This is clearly unacceptable in

an operational environment in which the

safety of the operator must be assured.

Even in the laboratory setting it is
difficult to determine which of the two

tasks generated an observed performance

decrement since the performance on the

two tasks is easily confounded. Second,

performance-based measures of mental

workload provide an output measure of

the o_erator's information processing
activlties (e.g. RT, accuracy). Thus,

at best, performance measures provide

only an indirect index of cognitive

function. Third, performance measures

do not always correlate highly with the

actual workload of the tasks (Brown,

1978; Dornic, 1980; Ogden et al., 1979).

Fourth, although subjective measures are

relatively easy to collect and possess

high face validity they do not reflect
the moment to moment variations in

workload that can be indexed by

physiological measures.

The present study is part of a

continuing effort to explore the utility

of psychophysiological measures of

mental workload. A primary aim of the

project is to determine the feasibility

of on-line uses of integrated

psychophysioiogical and performance

data. However, given the magnitude of

the project this report will be confined

to a description of a preliminary

examination of signal/noise ratio

parameters of ERPs. More specifically,

we will derive the functions that relate

amount of ERP data to discrimination

accuracy between workload conditions.

METHODS

Subjects

Four dextral subjects (2 female) were

paid $4.00/hour plus a dollar/day bonus

for their participation in five

sessions. All subjects had normal or
corrected-to-normal vision.

Tasks

Two different tasks were performed both

separately and together. We will

describe each of the tasks in detail.

Monitoring Task. One task

consisted of monitoring six gauges. The

behavior of a gauge was determined by

the interaction of four properties:

update speed, noise level, noise

frequency and transients. The cursors

moved around the gauges at different

speeds, a slower gauge taking longer to

reach the critical region. Noise level

was the amount ofrandom jitter in the

cursor. Noise frequency determined how

often random fluctuations were added to

a gauge. The addition of transients also

served to perturb a gauge.

The interaction of these properties

produced cursor driving functions of

varying _redictability. Manipulating
the driving functions allowed control

over gauge monitoring difficuity_ The

driving functions employed in the high

predictability (HP) conditions were such

that within a row of three gauges the

driving functions were identical in

terms of speed, noise level, and noise

frequency; no transient occurred for any

gauge. The two rows differed in the

speed of cursor movement, speed being
constant within a row. For the low

predictability (LP) conditions the

average value for all properties was

equivalent to the HP conditions,

however, the individual values were

varied withno established correlation

between any set of gauges. The LP

conditions contained three gauges with a

transient. The frequency of the
transient was different for each of the

three gauges.

The gauges were presented on a CRT

in front of the subject. Each gauge was

divided into 12 regions (labelled i to

12). In addition, each third of the

gauge was distinctly colored (green,

yellow and red). The critical level was

designated by the position marked by the

numeral 9, which was the first region in
the red zone.

The purpose of this task was to

reset each gauge as quickly as possible
once its cursor had entered the critical

region. To reset a gauge the subjects

pressed one of six keys after which the

cursor returned to the starting position

marked by the numeral i. The cursors

were not continuously visible. To sample

a given gauge the subject pressed one of

a set of six keys with their left hand.

The cursor remained visible for i000

msec. Simultaneous sampling was not

possible.

Mental Arithmetic Task. The

center of each gauge served as a display

area for the operands and operators of

the mental arithmetic trials. All of

the operands and operators were

presented simultaneously and remained in

view until an answer was entered or for

a maximum of 30 seconds. An answer

window appeared to the right of the

gauges. Answers were entered via the

numeric keypad of the response keyboard

and appeared in the window as they were

typed. Completion was signaled by

pressing the 'enter' key of the numeric

keypad. The inter-trial interval varied

from four to fifteen seconds. Difficulty

was manipulated by varying the number of
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column operations necessary to complete

the problem. The easy version of the

task required operations on two columns

while the difficult version of the task

required operations on three columns of

numbers. Henceforth, these versions of

the tasks will be referred to as A2 and

A3, respectively. Operations included

addition and multiplication.

Subjects participated in five

sessions. The first two sessions

constituted training. Single task

conditions, starting with the easy

conditions progressing to the difficult

conditions were performed first,

followed by the dual task conditions.

In the final three sessions the subject

performed the eight conditions in a

random order determined by a Latin

square design. Only the data from the

last three sessions will be presented in

this report. In all sessions two blocks
of each condition were run

consecutively, each block taking five
minutes. A five minute break was

imposed at the halfway point in addition

to any breaks the subject requested.

Performing the gauge monitoring and

mental arithmetic tasks in all possible

combinations yields eight conditions: 2

task types X 2 levels of difficulty X 2

task pairings (single or dual task

condition).

E_P_

Electroencephalographic (EEG)

activity was recorded from three midline

sites (Fz, Cz, Pz according to the

International 10-20 system: Jasper 1958)

referenced to averaged mastoids. All

electrodes were Sensormedics Ag/AgCL

electrodes. The scalp electrodes were

affixed with Grass EC2 electrode cream.

The forehead ground, mastoid and

electrooculgram (EOG) electrodes were

affixed with the Grass cream and

electrode collars. Vertical and

horizontal EOG was in order to control

for eye movement artifacts. Electrode

impedance was maintained below i0 kohms.

The EEG and EOG were amplified by

Grass 12A5 amplifiers with a 8 sec time

constant and a low-pass filter of i00

Hz. The recording epoch was 1300 msec

beginning i00 msec prior to an event.

The data channels were digitized every 5

msec and were filtered off-line (-3 db

at 6.89 Hz., 0 db at 22.22 Hz) prior to

further analysis. The

psychophysiological data collection was

governed by a DEC PDP 11/73 computer

system. Artifact rejection was based

upon the vertical eye movement standard

deviation. ERPs were recorded during

the three experimental sessions.

Subjects were seated in a dimly lit,

sound attenuated booth. Stimuli were

presented on a color monitor located 80

cm in front of the subject. Stimulus

presentation and behavioral data

collection were performed by an IBM AT.

Data Analysis Procedures

ERP eliciting events included

critical gauge samples, non-critical

gauge samples and, presentation of math

trials. ERP measurements included P300

latency, P300 base-to-peak amplitude,

P300 base-to-peak area and, slow wave

area. Behavioral variables included

accuracy and response speed in both the

monitoring and arithmetic tasks.

In an effort to determine the amount

of physiological data needed to

discriminate amon_ different

experimental condltions we applied a

bootstrappln@ approach to single trial
ERP data. Glven the amount of data

collected in our study we decided to

begin by examining the physiological

differences between two conditions that

could be discriminated on the basis of

performance measures: the LP single task

gauge condition and the gauge samples

from the LP/A3 dual task conditions.

One thousand samples of size n (n =

1,3,5,...,65) were randomly selected

from single trial data in each of these

conditions. By comparing the single

trial samples with the @rand average
waveforms for that condition the single

trial may be classified as a hit

(belonging to the criterion condition),

a miss (not belonging to the criterion

condition) or unclassifiable. Tabulating
the classification results in a 2 X 2

contingency table enabled us to assess

the efficiency of a number of ERP

measures.

RESULTS & DISCUSSION

The results will be organized in the

following manner. First, we will

describe the effects of single and dual

task manipulations on subjects'

performance and ERPs. These analyses
will enable us to establish the relative

differences in performance and workload

amon_ the single and dual task
condztions. Second, we will select two

experimental conditions that can be

distinguished on the basis of average

performance and ERP measures. A

bootstrapping approach will then be

applied to the single trial ERP data in
these conditions. The classification

accuracy value derived from each sample

of one thousand measures will then be

plotted as a function of the number of

trials in each of the thousand samples.

This procedure enables us to determine

how changes in the slgnal/noise ratio of

the ERP as a function of averaging (e.g.

averaging from 1 to 65 trials for each

of the thousand samples) translates into

gains in the accuracy of discrimina£ion
between workload conditions.
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The bootstrapping approach will be

applied to several different ERP

measures including: base to peak

measures of P300 amplitude (P3bp),

measures of P300 area (P3area),

cross-correlation measures of P300

amplitude (P3cross), and area measures

of a late slow wave component (SWarea_.

P3bp was defined as the largest

positivity in the waveform between 300

and 800 msec post-stlmulus relative to a

pre-stimulus baseline. The "stimulus"

was the presentation of the cursor with

the gauges. P3area was defined as the

area in a i00 msec window centered

around the peak. P3cross measures were

calculated by moving a 300 msec wide

cosine wave across the period from 300

to 800 msec post-stimulus. The slope of

the regression function at the point at
which the correlation between the cosine

"template" and the ERP waveform was

maximized was defined as P3cross.

SWarea was defined as the area between

750 and i000 msec post-stimulus.

Effects of F_xDerlmental Manipulations

Figure 1 presents a measure of the

accuracy with which subjects reset the

gauges in each of the monitoring
conditions. A "miss" was scored when

subjects failed to reset a gauge within

i0 sec following the point at which it

reached a critical value. As can be

seen from the figure, accuracy decreased

from single to dual task condltions and

again with an increase in the difficulty

of the dual task_ ACCuracy also

appeared to differ as a function of the

predictability of the gauges (HP vs.

LP). These differences were confirmed

by a repeated measures 2-way ANOVA, with

gauge (2 gauge conditions, HP and LP)

and task (3 arithmetic conditions, none,

A2 and A3) as factors. Significant maln

effects were obtained for both the gauge

(F(I,3)=13.2, p<.01) and task

(F(2,6)=21.2, p<.01) factors. A

marginally significant interaction

between gauge and task factors was also

obtained (F(2,6)=2.9, p<.08) suggesting

a decrease in accuracy at the most

difficult level of each of the factors.

_ lOO
_D

0
[.3

_ 5o

Figure I.

task.

CZ HP

LP

Accuracy in

\\x4

None A2 A3

Concurrent Math Task

the monitoring

_9
O)

Figure 2.

task.

[Z] HP
LP

None

Concurrent Math Task

Reset RT in the monitoring

Figure 2 presents gauge reset RTs
for each of the monitoring conditions.

A repeated measures ANOVA performed on

this data set revealed a significant

main effect for the task factor

(F(2,6)=5.4, p<.01). RT increased from

the sin@It to the dual task conditions
and agaln from the A2 to the A3 versions
of the arithmetic task. The main effect

for the gauge factor did not attain

statistical significance.

Accuracy and RT measures are

presented for the arithmetic task in

figures 3 and 4, respectively. Accuracy

in the arithmetic task was higher when

operations were performed on two columns

than when a three column problem was

performed (F(1,3)=22.8, p<.01). RT was
also faster in the A2 than in the A3

version of the arithmetic task

(F(1,3)=26.4, p<.01). Finally, RT in

the arithmetic task increased with the

transition from the single to dual task

conditions and again when the difficulty

of the monitoring task was increased.

O

O

_Ju2

INN A3

._I_

HP LP

Concurrent Gauge Task

Figure 3. Accuracy in the arithmetic

task.
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Figure 4. RT in the arithmetic task.

Real-Time Analysis o_ Mental Workload

Given the substantial amount of

analysis time required to perform the
.bootstrapping" operation we decided to
select two experimental conditions to
analyze further. In order to perform
the bootstrapping operation it was
necessary for the experimental
conditions to meet three criteria.

First, there should be a substantial
number of trials available in the
selected conditions. This was necessary
since repeated samples of 1000 trials
would be selected during the
bootstrapping operation. Second, the
conditions should be discriminable on
the basis of performance measures.
Thus, we wanted to begin our analysis of
the real-time potential of ERPe by
seleJting two clearly discriminable
conditions. Later analyses will examine
conditions that are less discriminable.

Third, the conditions should be
discriminable on the basis of average
ERr measures. Based on these criteria
we selected two conditions from the
monitoring task: the single task LP
condition and the dual task LP/A3
condition.
-15

-12 ¸

._-3,

-_,

E 6.

9,

12 +

15

-- non-cfltlcal LP

...... non-crltlcal LP/A3

...... critical LP

-- critical LP/A3

0 200 400 800 800 +000 1200

Time (meet)

Figure 5. Grand average ERPs recorded
at Pz for four of the monitoring
conditions.

Figure 5 presents the grand average
ERPs across the four subjects for the LP
and LP/A3 conditions. It is important
to note that we have further subdivided
the conditions into waveforms that were
ellcited during times at which the
gauges were in the acceptable range and
other times in which the gauges had gone
critical. Since the gauge critical
samples were most closely associated
with the performance measures we decided
to employ ERPs to discriminate between
the LP and LP/A3 conditions during the

gauge crltical periods. Approximately
200 trials were available in each o_
these conditions for each of the

subjects. The bootstrapping operation
was performed separately on the data
from two of the original four subjects.

As described above, the
bootstrapping operation involved the
repeated selection of sSngle trial ERPI
from each of the conditions. Each

"sample" was comprised of 1000 ERP
measures, 500 selected from the LP
condition and 500 selected from the

LP/A3 condition. Each of the ERr
measures was composed of an average of
from 1 to 65 single trial ERr waveforms.
Classification accuracy was determined
by computing the relative "distance" of
each ERr measure from the subject's
grand average ERP measures in the LP and
LP/A3 conditions. For example, if a
subject possessed a grand average P300
amplitude of 50 mlcrovolts in the LP/A3
condition and 10 microvolts in the LP
condition then a single trial measure of
46 microvolts would be classified as

LP/A3. This classification procedure
was performed for each of the 1000 ERP
measures in a sample and for each of the
different pattern recognition techniques
(i.e. P3bp, P3area, P3cross, SWcross).

Figures 6 and 7 present the
classiflcation functions for subjects 2

and 3, respectively. In the figures we
plot the accuracy of classiflcatlon
(y-axle) against the number of single
trial ERPs that were averaged to produce
each of the ERP measures in a sample
(each sample included 1000 ERr
measures). Several aspects of the
figures are noteworthy. First, for each
of the pattern reco_nltion techniques

lotted, classification accuracy
ncreased with increases in the number

of trials per measure. This continued
improvement in classification accuracy
represents the increasing 81gnal/noise
ratio as additional single trials are
averaged to produce each measure.
Second, it is clear from the figures
that the pattern recognition techniques
improved at different rates and achieved
different asymptotic levels of accuracy.
For both of the subjects P3bp and P3area
improved more quickly and achieved
higher levels of performance than SWarea
and P3cross. In fact, P3cross is not

plotted f0rsubject 2 because it never
exceeded 50% classification accuracy.
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Figure 6. Classification accuracy as a
function of the number of trials per

measure for subject 2.
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Figure 7. Classification accuracy as a

function of the number of trials per

measure for subject 3.

Third, for both P3bp and P3area there

was a dramatic improvement in

classification accuracy with the

addition of the first five single trials

followed by a more gradual improvement

as additional trials were averaged.

Finally, it is interesting to note that

classification accuracy improved and

reached different asymptotic levels for

the two subjects.

SUMMARY AND CONCLUSIONS

The results of our investigation

provide support for the utility of ERPs

as real-time measures of mental

workload. However, it is Important to

note that %his support is both

preliminary and tentative due to the

small number of subjects, conditions,

and pattern recognition techniques used

in our study. The results are

encouraging, however, and suggest a

number of avenues for further

exploration.

First, the differential efficiency

of the pattern recognition techniques

suggests that other techniques may offer

improvements over the four that we have

examined. In our study we used

techniques that capitalized on the

differences between only one component

of the ERP (i.e. either P300 or Slow

Wave amplitude). However, a number of

other ERP components also appear to be
sensitive to variations in mental

workload (Horst et al., 1984; Kramer,

1987). G_ven that these components

reflect changes in workload not indexed

by P300 and Slow Wave amplitude, the use

of multivariate techniques such as

discriminant functions should improve

the ability to discriminate among

different levels of workload. It might

also be possible to enhance

discriminability by examining changes in

the frequency spectra of EEG.

Second, previous exam!nations of the

accuracy of single trial classifications

of ERPs have suggested that the

efficiency of different pattern

recognition techniques is dependent on

the characteristics of subject's

waveforms (Farwell and Donchin, 1988).

For example, base to peak measures tend

to be most successful when the component

of interest is sharpley defined while

area measurss are superior for wider

components. Differences in the

efficiency of P3cross and SWarea

measures for our two subjects also

appear to be due to differences in their

waveforms. Thus, these analyses suggest

that it might be useful to compile a set

of heuristics that map waveform

characteristics to pattern recognition

techniques ............

Third, it seems reasonable to

suppose that the ability to discriminate

among workload levels depends on the

homogeneity within workload levels. In

the present study we selected gauge

samples in the LP/A3 condition

irrespective of whether subjects were

performin@ the arithmetic task

(arithmetxc tasks were presented with
isi's of from 4 to 15 secs). Thus, our

LP/A3 condition was actually a mixture

of single and dual task trials. A

comparison of the "dual task" trials in

the LP/A3 condition with the LP

condition should increase classification

accuracy.

Fourth, while it is important to

determine classification accuracy in the

"best-case" situation it is also

imperative that classification functions
are derived for smaller differences in

workload. We are currently examining

the range of sensitivity of ERP measures

to graded differences in workload.

Finally, it is clear that classification

accuracy can be improved by integrating

psychophysiological and performance
measures into predicative and

descriptive equations. Therefore, it is

necessary to determine how the relative

sensitivlty of different physiological

and performance measures vary with

changes in task structure and subject
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